
Preventing timing attacks against RQC using
constant time decoding of Gabidulin codes

Slim Bettaieb∗, Löıc Bidoux∗, Philippe Gaborit†, and Etienne Marcatel∗‡

∗Worldline, ZI Rue de la pointe, 59113 Seclin, France
†University of Limoges, XLIM-DMI, 123, Av. Albert Thomas, 87060 Limoges, France

‡Atos, 68 avenue Jean Jaurès, 78340 Les Clayes-sous-Bois, France

Abstract. This paper studies the resistance of the code-based encryp-
tion scheme RQC to timing attacks. We describe two chosen ciphertext
timing attacks that rely on a correlation between the weight of the er-
ror to be decoded and the running time of Gabidulin code’s decoding
algorithm. These attacks are of theoretical interest as they outperform
the best known algorithm to solve the rank syndrome decoding problem
in term of complexity. Nevertheless, they are quite impracticable in real
situations as they require a huge number of requests to a timing oracle.
We also provide a constant-time algorithm for the decoding of Gabidulin
codes preventing these attacks without any performance cost for honest
users.

Keywords: RQC, Gabidulin decoding, Timing attack, Rank metric

1 Introduction

RQC [2, 3] is a code-based IND-CCA2 public key encryption scheme submitted
to the NIST’s post-quantum cryptography standardization project. It features
attractive parameters and its security only relies on the rank syndrom decoding
problem without any additionnal assumption regarding the indistinguishability
of the considered family of codes. RQC relies on Gabidulin codes which were
introduced in 1985 in [6]. The latter are the analogs of the Reed-Solomon codes
for the rank metric and can be thought as the evaluation of q-polynomials of
bounded degree on the coordinates of a vector over Fqm . Gabidulin decoding can
be performed efficiently using the Welch-Berlekamp like algorithm proposed by
Loidreau [9]. Hereafter, we study the resistant of RQC to timing attacks.

Contributions. In this paper, we present two timing attacks against RQC. In
addition, we also describe a constant time decoding algorithm for Gabidulin
codes that prevent these attacks without any performance cost for honest users.

Paper organisation. In section 2, we introduce the rank metric, Loidreau’s al-
gorithm for the decoding of Gabidulin codes as well as the RQC cryptosystem.
Next, in section 3, we highlight the correlation between the rank of the error to
be decoded and the decoding time of Loidreau’s algorithm. This correlation is the
keystone of the timing attacks described in section 4. To finish, countermeasures
to these attacks are presented in section 5.

2 Preliminaries

In this section, we present some preliminaries regarding the rank metric (sec-
tion 2.1), Gabidulin codes (section 2.2) and the RQC cryptosystem (section 2.3).

2.1 Rank metric

Let q be a power of a prime p, m an integer, Fqm a finite field and β =
(β1, · · · , βm) a basis of Fqm over Fq. Any vector x ∈ Fn

qm can be associated
to the matrix Mx ∈Mm,n(Fq) by expressing its coordinates in β.

Definition 1 (Rank weight). Let x = (x1, · · · , xn) ∈ Fn
qm be a vector, the

rank weight of x, denoted ω(x), is defined as the rank of the matrix Mx = (xi,j)
where xj =

∑m
i=1 xi,jβi. The set of words of weight w in Fn

qm is denoted Snw.

Definition 2 (Support). The support of x ∈ Fn
qm , denoted Supp(x), is the

Fq-linear space of Fqm spanned by the coordinates of x. Formally, Supp(x) =
〈x1, . . . , xn〉Fq .

Definition 3 (Fqm-linear code). An Fqm-linear [n, k] code C of length n and
dimension k is a linear subspace of Fn

qm of dimension k.

Definition 4 (Generator Matrix). A matrix G ∈ Fk×n
qm is a generator matrix

for the [n, k] code C if C =
{
xG | x ∈ Fk

qm
}

.

Definition 5 (Parity-Check Matrix). A matrix H ∈ F(n−k)×n
qm is a parity-

check matrix for the [n, k] code C if C =
{

x ∈ Fn
qm | Hx> = 0

}
. The vector

Hx> ∈ Fn−k
qm is called the syndrome of x.

2.2 Gabidulin codes

Gabidulin codes were introduced in 1985 in [6]. They can be seen as the eval-
uation of q-polynomials of bounded degree on the coordinates of a vector over
Fqm . The notion of q-polynomial was introduced by Ore in [10].

Definition 6 (q-polynomials). A q-polynomial over Fqm is a polynomial de-

fined as P (X) =
∑r

i=0 piX
qi with pi ∈ Fqm and pr 6= 0. The q-degree of a

q-polynomial P is denoted degq(P).

Definition 7 (Gabidulin codes). Let k, n,m ∈ N such that k 6 n 6 m. Let
g = (g1, . . . , gn) be a Fq-linearly family of vectors of Fqm . The Gabidulin code
Gg(n, k,m) is the [n, k]qm code defined as

{
P (g) | degq(P) < k

}
where P (g)

denotes the evaluation of the coordinates of g by the q-polynomial P .

Gabidulin codes can efficiently decode up to bn−k2 c errors [6]. In such cases, the
algorithm considered hereafter in this paper features no decoding failure. It has
been proposed by Loidreau in [9] and later improved in [5]. It is based on the
resolution of the Linear Reconstruction Problem (see [9, 5] for further details).

Definition 8 (Decoding(y,Gg, t)). Find, if it exists, c ∈ Gg and e with ω(e) ≤
t such that y = c + e.

Definition 9 (Reconstruction(y,g, k, t)). Find a tuple (V,N) where V is a
non-zero q-polynomial with degq(V) ≤ t and N is a q-polynomial with degq(N) ≤
k + t− 1 such that V (yi) = N(gi) with 1 ≤ i ≤ n.

Theorem 1 ([9]). If (V,N) is a solution of Reconstruction(y,g, k, t) and

t ≤ b (n−k)2 c, then (c, e) = (f(g),y−c) with f defined as the left euclidean divi-
sion of N by V in the ring of q-polynomials is a solution of Decoding(y,g, k, t).

As stated in [2], one can solve Reconstruction(y,g, k, t) by constructing by
recurrence two pairs of q-polynomials (N0, V0) and (N1, V1) satisfying the in-
terpolation conditions of the problem V (yi) = N(gi), 1 ≤ i ≤ n at each step
i and such that at least one of the pairs satisfies the final degree conditions
degq(V) ≤ t and degq(N) ≤ k + t − 1. See algorithm 5 (from [5], section 4,
algorithm 5) hereafter for additionnal details.

Theorem 2 ([5]). The complexity of solving the Decoding(y,Gg, t) problem
using algorithm 5 is O(n2) operations in Fqm .

2.3 The RQC public key encryption scheme

RQC [2, 3] is a code-based IND-CCA2 encryption scheme whose security relies
on the rank syndrom decoding problem [7, 4] without any additionnal assump-
tion regarding the indistinguishability of the family of codes used. It is based
on an IND-CPA PKE construction (described in figure 1) on top of which the
HHK transformation [8] is applied in order to obtain an IND-CCA2 KEM. Stan-
dard transformations are then applied in order to get an IND-CCA2 encryption
scheme. RQC uses a Gabidulin code of generator matrix G denoted C and a
random double-circulant [2n, n] code of parity-check matrix (1,h).

– Setup(1λ): Generates and outputs the global parameters param =
(n, k, δ, w,wr, we).

– KeyGen(param): Samples h
$← Fnqm , G ∈ Fk×nqm a generator matrix of C,

x
$← Snw, y

$← Snw such that Supp(x) = Supp(y). Sets sk = (x,y), pk =
(G,h, s = x + h · y) and returns (pk, sk).

– Encrypt(pk,m): Generates r1
$← Snωr

, r2
$← Snωr

, e
$← Snωr

such that Supp(r1) =
Supp(r2) = Supp(r3). Sets u = r1 + h · r2 and v = mG + s · r2 + e and returns
c = (u,v).

– Decrypt(sk, c): Returns C.Decode(v − u · y).

Fig. 1. Description of the IND-CPA version of RQC [2].

RQC correcteness relies on the decoding capability of the Gabidulin code C.
Indeed, Decrypt (sk,Encrypt (pk,m)) = m when v − u · y is correctly decoded

namely whenever ω (x · r2 − y · r1 + e) ≤ b (n−k)2 c.

3 Correlation between decoding time and error rank

In this section, we show that there exists a correlation between the rank of the
error to be decoded and the running time of algorithm 5. This observation is sum-
marized in theorem 3. We start by introducing a simpler version of Loidreau’s
algorithm (section 3.1) and then we prove the aforementioned theorem (sec-
tion 3.2). Next, we describe an oracle that computes the rank of the error to be
decoded using the running time of the decoding algorithm (section 3.3).

3.1 A simpler decoding algorithm

In order to solve the Reconstruction(y,g, k, t) problem, Loidreau’s algorithm
performs a q-polynomial interpolation. We denote by nominal case, dummy in-
terpolation case and early end case the three scenarios that may occur during the
interpolation step (see algorithm 5). The early end case is quite subtle as it per-
forms two operations simultaneously. First, it checks the discrepancy vector to
detect if the current q-polynomials are an admissible solution which can happen
whenever the rank of the error to be decoded is inferior to the decoding capacity
of the code. In addition, if a nominal interpolation can’t be performed using the
ith coordinate of the discrepancy vector (see nominal case below) but can be
performed using one of its jth coordinate where j > i, then the ith and jth co-
ordinates of the discrepancy vector are swapped. The nominal case corresponds
to the expected interpolation which requires to inverse u1,i to be performed. If
both u1,i = 0 and u0,i = 0, a dummy interpolation case will be performed.

As both the dummy interpolation case and the early end case handle situa-
tions where u1,i = 0, the considered algorithm can be simplified by merging them
together. Indeed, one can see that the dummy interpolation is using λ0 = λ1 = 0
which mean that no interpolation is actually performed at this step even if the
q-degrees of the q-polynomials are increased. As a consequence, by modifying
the early end case condition to u1,j = 0 only (see algorithm 6), one can handle
these two cases simultaneously. In fact, the dummy interpolation cases will be
delayed to the end of the algorithm during the swap step but will never be per-
formed as an admissible solution will be found as some point before we had to
handle these cases. This is due to the fact that the dummy interpolation only
increase the q-degrees of the q-polynomials without making any progress with
respect to error correction. Therefore, our simpler algorithm always returns the
q-polynomials of minimal q-degrees solving the reconstruction problem while the
original algorithm may return any admissible solution.

The constant time decoding algorithm proposed in section 5 is based on our
simpler algorithm. Hereafter, the term decoding algorithm refers to algorithm 6.

3.2 From decoding time to error weight

The decoding algorithm performs successive interpolations until the solution is
found. As the early end case may end the main loop prematurely, the running

time of the algorithm may vary. Theorem 3 formalizes this observation as it shows
that there exists a correlation between the rank of the error to be decoded and
the decoding time of the Gabidulin code whenever the rank of the considered
error is smaller than the error correcting capacity bn−k2 c.

Theorem 3. Let G be the generator matrix of a Gabidulin code Gg(n, k,m),
m ∈ Fk

qm , e ∈ Fn
qm such that ω(e) = t with t ≤ bn−k2 c and y = mG +

e. Then, algorithm 6 will perform exactly 2t interpolation steps when solving
Decoding(y,Gg, t).

Proof. The proof of theorem 3 follows from lemmas 1 and 2.

Lemma 1. Under the same hypotheses as theorem 3, algorithm 6 will perform
at least 2t interpolation steps when solving Decoding(y,Gg, t).

Proof. In order to retrieve an error e, one needs to find a q-polynomial V1 such
that V1(e) = 0. If ω(e) = t, then one have degq(V1) ≥ t. As degq(V1) ≥ u if 2u
interpolations steps have been performed (from propostion 12 of [5]), it follows
that algorithm 6 will perform at least 2t interpolation steps.

Lemma 2. Under the same hypotheses as theorem 3, algorithm 6 will perform
at most 2t interpolation steps when solving Decoding(y,Gg, t).

Proof. Let n′ = k + 2t and e′ = (e1, . . . , en′) be a shortened error such that
Supp(e′) = Supp(e). It is always possible to construct e′ from e using a coordi-
nates permutation followed by a truncation. Let Gg′(n′, k,m) be the shortened
Gabidulin code generated by the matrix G′ using the vector g′ = (g1, . . . , gn′).

As the error decoding capacity of Gg′(n′, k,m) is equal to t = bn
′−k
2 c, the vector

y′ = (y1, . . . , yn′) = mG′ + e′ can be decoded using algorithm 6 in at most 2t
interpolation steps. Let (N ′1, V

′
1) be the solution retuned by algorithm 6, then

every vector in Supp(e′) is a root of V ′1 as well as every vector in Supp(e) because
Supp(e′) = Supp(e). It follows that (N ′1, V

′
1) is a solution of the decoding prob-

lem induced by Gg(n, k,m) and y. As algorithm 6 outputs the q-polynomials of
minimal q-degrees solving the reconstruction problem, decoding Gg(n, k,m) is
equivalent to decoding Gg′(n′, k,m) therefore algorithm 6 will perform at most
2t interpolation steps when solving Decoding(y,Gg, t).

Corollary 1. Let G be the generator matrix of a Gabidulin code Gg(n, k,m),
m ∈ Fk

qm , e ∈ Fn
qm such that ω(e) = t with t ≤ bn−k2 c and y = mG + e, then it

is possible to find ω(e) from the running time of algorithm 6.

3.3 Error weight oracle for Gabidulin codes and RQC

Let OGab
Time and Orqc

Time denote two timing oracles that return the running time of
either the Gabidulin decoding algorithm or the RQC Decapsulate step. Following
corollary 1, we now explain how to construct two oracles denoted OGab

ω(e) and

Orqc
ω(e) that return the rank ω(e) of the decoded error using respectively OGab

Time

and Orqc
Time . The oracle OGab

ω(e) takes as input a Gabidulin code G and a vector y

while the oracle Orqc
ω(e) takes as input an RQC public key pk (which implicitely

defines a Gabidulin code) and a ciphertext ct.

Each oracle features an initialization step Init (see algorithm 1) and an eval-
uation step Eval (see algorithm 2). The Init step computes the expected running
times required to decode an error e of given weight w for all w ∈ [0, t]. To this
end, requests OGab

Time (G, e) (respectively Orqc
Time (pk, (0, e)) are made using the

message m = 0 (respectively m = r1 = r2 = 0) along with errors e of weight
i ∈ [0, t]. The Eval step uses these expected running times T to output the rank
of the error ω(e) by returning the index i such that |time−Ti| is minimal where
time denotes the result given by OGab

Time (G,y) or Orqc
Time (pk, ct). The complexity of

a OGab
ω(e) (respectively Orqc

ω(e)) request is equal to the complexity of a Gabidulin

decoding (respectively an RQC decapsulation) namely O(n2) operations in Fqm .

Algorithm 1 Init step of OGab
ω(e) and Orqc

ω(e)

Input:

{
A Gabidulin code G(n, k,m) and access to OGab

Time for OGab
ω(e)

A public key pk and access to Orqc
Time for Orqc

ω(e)

A precision parameter param

Output: An array T of expected running times

1: T←− (0, · · · , 0) ∈ Rt+1

2: for i ∈ {0, · · · , t} do
3: for j ∈ {1, · · · , param} do
4: e

$←−− Sni
5: time ←−

{
OGab

Time (G, e) for OGab
ω(e)

Orqc
Time (pk, (0, e) for Orqc

ω(e)

6: Ti+1 ←− Ti+1 + time

7: Ti+1 ←− Ti+1 / param

8: return T

Algorithm 2 Eval step of OGab
ω(e) and Orqc

ω(e)

Input:

{
A Gabidulin code G(n, k,m) and a vector y for OGab

ω(e)

A public key pk and a ciphertext ct for Orqc
ω(e)

An array T of expected running times from the Init step

Output: The rank ω(e) of the decoded error

1: time ←−
{
OGab

Time (G,y) for OGab
ω(e)

Orqc
Time (pk, ct) for Orqc

ω(e)

2: return i such that |time−Ti| is minimum

In order for these oracles to be usefull, each difference Ti+1 − Ti have to
be large enough to be accurately measured. Experimental results (see section 5,
figure 2) shows that for the considered machine, Ti+1−Ti amounts for 6.6×104

CPU cycles (approximately 0.02 ms) for Orqc
ω(e) in average. Such values allow

timing attacks to be performed locally but would hardly be sufficient to allow
an adverdary to perform a remote attack due to the variability of the network
transfer times. Nevertheless, we assume hereafter that the existence of such an
oracle is a potential threat for RQC and thus we choose to address it properly.

4 Timing attacks against RQC

In this section, we present two side-channel chosen ciphertext attacks against
RQC. These attacks outperform the best known algorithm to solve the rank
syndrome decoding problem [4] in term of complexity. Nonetheless, they require
a huge number of requests to Orqc

ω(e) therefore are quite unpracticable in real

situations. We start by giving an overview of the attacks (section 4.1) then we
describe two support recovery algorithms (section 4.2 and 4.3) that relies on
Orqc

ω(e) in order to bring the aforementionned improvement. Next, we present

the complexity and the bandwidth cost of these attacks with respect to RQC
parameters (section 4.4).

4.1 Overview of the attacks

The two attacks presented hereafter follow the same pattern. First, a support
recovery algorithm is used to find F = Supp(x) = Supp(y) then a linear system
is solved in order to retrieve x and y thus revealing the secret key.

The support recovery algorithm makes several requests to Orqc
ω(e) in order

to find the support of y. All these requests are constructed such that m = 0,
r1 = 1 and r2 = 0 namely the considered ciphertexts are of the form (1, e).
Recall from section 2.3 that decrypting a RQC ciphertext implies to decode
mG+x·r2−y·r1+e. In this case, this will reduce to decoding e−y. The support
recovery algorithm uses this particular form in order to retrieve F = Supp(y).

Once the support F is known, one only need to solve the linear system (1 h) ·
(x y)> = s to find x and y as explained in [4]. This system can be obtained
from the public key and features nm equations over Fq as well as 2wn unknowns
over Fq because dim(F) = w. Given the RQC parameters, this system is always
solvable and the secret key sk = (x,y) is its unique solution.

4.2 Simple support recovery algorithm

The simple support recovery strategy (see algorithm 3) tests all the elements
α ∈ Fqm and checks whether they belong to the support F in order to retrieve
one of its basis (F1, · · · , Fw). To this end, a function ψ : Fqm −→ Fqm that

deterministically enumerates the elements of Fqm is defined. In addition, errors
of the form e = (α, 0, · · · , 0) ∈ Fn

qm are considered. One can see that if Supp(e) ⊂
Supp(y), then ω(e− y) = w otherwise ω(e− y) = w + 1. Using Orqc

ω(e) , one can

retrieve the rank of e− y thus learning if α ∈ F or not.

Algorithm 3 Simple support recovery

Input: A public key pk and access to Orqc
ω(e)

The oracle precision parameter param

Output: F = Supp(x) = Supp(y)

1: T←− Orqc
ω(e).Init(pk, param)

2: F←− 〈0〉Fq
3: α←− 0 ∈ Fqm
4: while dim(F) < w do
5: α←− ψ(α)
6: e←− (α, 0, · · · , 0) ∈ Fnqm
7: ω ←− Orqc

ω(e).Eval(T, pk, (1, e))
8: if ω = w then
9: F←− F + 〈α〉Fq

10: return F

Algorithm 3 requires O(qm) requests to the Orqc
ω(e) oracle therefore its com-

plexity is O(n2qm) operations in Fqm .

4.3 Advanced support recovery algorithm

The advanced support recovery strategy (see algorithm 4) is a generalization of
the simple one in which we no longer consider errors of weigth ω(e) = 1 but
rather errors of weight ω(e) = t−w. Instead of only checking if α ∈ Supp(y), we
look for any linear combination of the error’s coordinates belonging to Supp(y)
therefore speeding-up the algorithm. Without loss of generality, we only consider
the case q = 2 since it matches the parameters used in RQC.

Given a ∈ Fn
qm , let (a1, · · · , aω(a)) ∈ Fω(a)

qm denotes a basis of Supp(a). As
ω(e) = t − w and ω(y) = w, if ω(e − y) < t then there exists at least one non
trivial linear combination of the vectors (ei)i∈[1,t−w] such that:

t−w∑
i=1

λiei =

w∑
j=1

µjyj ∈ Supp(y)

The remaining of the algorithm compute the λi of such expressions thus re-
trieving a vector in the support F. Each oracle request may lead to the discovery

of ∆ = ω(e) +ω(y)−ω(e−y) = dim(ker(y1 · · · yw e1 · · · et−w)) elements of F
although ∆ will be equal to 1 with overwhelming probability.

Let Mi ∈Mm,w+i(Fq) be the matrices defined as Mi =
(
y1 . . . yw e1 . . . ei

)
for i ∈ [1, t−w] and d = min {i | rank(Mi) < w + i}. By construction, λd = 1.
For i ∈ [1, d], let Md,i ∈ Mm,w+d(Fq) be the matrices defined as Md,i =(
y1 · · · yw e1 · · · ei−1 0 ei+1 · · · ed

)
. If rank(Md) = rank(Md,i), then λi = 1.

By performing this test for all i ∈ [1, d], one can retrieve
∑d

i=1 λiei ∈ Supp(y).

Algorithm 4 Advanced support recovery

Input: A public key pk and access to Orqc
ω(e)

The oracle precision parameter param

Output: F = Supp(x) = Supp(y)

1: T←− Orqc
ω(e).Init(pk, param)

2: F←− 〈0〉Fq
3: while dim(F) < w do

4: e
$←−− Snt−w

5: ω ←− Orqc
ω(e).Eval(T, pk, (1, e))

6: if ω < t then
7: ∆←− t− ω
8: d←− 0
9: ω′ ←− 0

10: for k ∈ {1, · · · , ∆} do

. Compute d
11: repeat
12: d←− d+ 1
13: ω′ ←− ω′ + 1
14: e′ ←− (e1, · · · , ed, 0, · · · , 0) ∈ Fnqm
15: until Orqc

ω(e).Eval(T, pk, (1, e
′)) < w + ω′

. Compute λ
16: λd ←− 1
17: for i ∈ {1, · · · , d− 1} do
18: e′ ←− (e1, · · · , ei−1, 0, ei+1, · · · , ed, 0, · · · , 0) ∈ Fnqm
19: if Orqc

ω(e).Eval(T, pk, (1, e
′)) = w + ω′ − 1 then

20: λi ←− 1
21: else
22: λi ←− 0

23: F←− F + 〈
d∑
i=1

λiei〉Fq

24: ed ←− 0
25: ω′ ←− ω′ − 1

26: return F

Hereafter, we assume for simplicity that rank(e) = t− w as it happens with
high probability and can be enforced at no cost by tweaking the algorithm.
The complexity of algorithm 4 is O

(
wn2/p

)
where p denotes the probability

to find a non trivial intersection between Supp(e) and Supp(y) namely p =
P (ω(e− y) < t | ω(y) = w ∧ ω(e) = t− w). The quantity 1−p represents the
probability to pick the coordinates of e linearly independant from the coordinates
of y knowing that ω(e) = t−w and ω(y) = w. For each coordinate ei, one have
qm− qw+i ways to pick it correctly amongst qm− qi potential choices therefore:

1− p =

t−w−1∏
i=0

qm − qw+i

qm − qi
=

w−1∏
i=0

1

qm − qi
×

t−1∏
i=t−w

qm − qi

1

When considering the RQC parameters, one can approximate the complexity
of algorithm 4 as O

(
wn2qm−t

)
operations in Fqm .

4.4 Attacks complexity and bandwith cost

As the linear system solving step of the attack is negligible with respect to
the support recovery one, the attacks complexity is equal to the complexity of
algorithms 3 and 4. Hereafter, we briefly describe a small improvement for these
algorithms relying on the fact that 1 ∈ Supp(y) in RQC. Indeed, one should note
that if a /∈ Supp(y), then ∀λ ∈ Fq, a+λ /∈ Supp(y). Thus, by setting F = 〈1〉Fq

at
the begining of the algorithms, one can choose error’s coordinates from Fqm/〈1〉Fq

instead of Fqm . Consequently, the simple attack has a complexity of O(n2qm−1)
operations in Fqm and requires O(qm−1) requests to the Orqc

ω(e) oracle. Similarly,

the advanced attack has a complexity of O(wn2qm−t−1) operations in Fqm and
requires O(qm−t−1) requests to the Orqc

ω(e) oracle.

Table 1 presents the complexity and number of requests required to perform
the attacks with respect to RQC parameters. One can see that both attacks out-
perform the best known algorithm to solve the rank syndrome decoding problem
in term of complexity [4]. Nevertheless, they both require a huge number of re-
quests to the Orqc

ω(e) oracle therefore are quite unpracticable in real situations.

Table 1. Attacks complexity and bandwith cost against RQC

Complexity Requests

128 192 256 128 192 256

RSD solving [4] 2132 2203 2257 0 0 0

Simple attack (§4.2) 2101 2126 2152 288 2112 2138

Advanced attack (§4.3) 273 286 2106 258 270 290

5 Preventing timing attacks against RQC

In this section, we explain how to prevent timing attacks against RQC using
either a constant time decoding algorithm for Gabidulin codes (section 5.1)
or a countermeasure based on the IND-CCA2 property of RQC (section 5.2).
Interestingly, these two strategies can be implemented without any additional
performance cost for honest users.

5.1 Constant time decoding of Gabidulin codes

Algorithm 7 provides a constant-time implementation of the reconstruction al-
gorithm and as such can be used as a countermeasure to the timing attacks
against RQC. The main idea is to perform operations on dummy q-polynomials
(lines 2-5) whenever required (lines 6-17) while ensuring that every operations
is performed on a q-polynomial of correct q-degree with respect to a nominal
case (lines 25-34). As a result, given a Gabidulin code Gg(n, k,m), and an error
e ∈ Fn

qm such that ω(e) = t with t ≤ bn−k2 c, algorithm 7 will perform exactly

2× bn−k2 c interpolation steps whatever the value of t is.

Figure 2 compares the running time of algorithms 6 and 7 when they are
respectively used to decode Gabidulin codes or used as part of the Decapsulate
step of RQC. We have performed 10 000 tests for each error weight using a
computer equiped with an Intel Core i7-7820X CPU @ 3.6 GHz and 16GB of
memory. On average (excluding the case ω(e) = 0 which is discussed below),
Ti+1 − Ti is reduced from 6.6 × 104 to 5.6 × 103 CPU cycles (approximately
2 µs) for Orqc

ω(e) . The average standard deviation to the running time observed

for each error weight when using algorithm 7 is equal to 1.4 × 104 CPU cycles.
Therefore, Orqc

ω(e) cannot be used to distinguish ω(e) in a reliable way anymore

thus rendering the aforementioned timing attacks even more impracticable.

Fig. 2. Running time (CPU cycles) of Gabidulin code decoding and RQC-128 Decap-
sulate step with respect to different error weights ω(e) using algorithms 6 and 7

0 10 20 30
0

1

2

Error weight

C
P

U
C

y
cl

es
(m

il
li
o
n
s)

Gabidulin (Alg. 6)

Gabidulin (Alg. 7)

0 10 20 30
2

3

4

RQC-128 (Alg. 6)

RQC-128 (Alg. 7)

By analyzing figure 2, one immediately sees that the special case ω(e) = 0 is
an outlier with respect to the running time of algorithm 7. This is presumably
due to the fact that the involved q-polynomials have many coefficients equal to
zero which speeds the q-polynomial update step of the decoding. This case does
not appear to be concerning as it seems hard to retrieve information regarding
the support F whenever ω(x · r2 − y · r1 + e) = 0. One may exploit this special
case by trying to find errors e such that e − y = 0 (with r1 = 1 and r2 = 0)
nonetheless such an attack would have a complexity of O(qωn) operations in Fqm

which is worse than solving the rank syndrome decoding problem.

The running time of algorithm 7 is similar to the running-time required to
decode an error of weight ω(e) = bn−k2 c using algorithm 6. As the weight of the
error x · r2 − y · r1 + e used in RQC is equal to the error correction capacity of
the considered Gabidulin code, our constant time algorithm can be used without
any additional performance cost for honest users.

5.2 Countermeasure based on RQC IND-CCA2 property

RQC being an IND-CCA2 encryption scheme, any attempt to modify one of its
ciphertexts will be detected and the Decapsulate step will end-up by an Abort.
Thus, by using standard techniques when implementing the Abort behaviour,
the aforementioned timing attacks can be prevented. Indeed, one may choose to
not respond to invalid requests therefore preventing the adversary to perform
any time measurement. Alternatively, one can wait a randomly chosen amount
of time before sending its response thus forcing an adversary to perform a huge
number of requests in order to get any reliable time measurement. As both of
these strategies intervene after an Abort case is detected, they can be imple-
mented without any additional performance cost for honest users.

6 Conclusion

In this paper, we have highlighted a correlation between the rank of the error to
be decoded and the running time of Loidreau’s decoding algorithm for Gabidulin
codes. We have also described two chosen ciphertext timing attacks against RQC
that are based on this correlation. In addition, we have provided countermeasures
preventing the aforementionned attacks. The first one relies on a constant time
decoding algorithm for Gabidulin codes and second one uses the IND-CCA2
property of RQC. As both of these countermeasures can be deployed without
additional performance cost for honest users, we suggest to implement both
of them. In a future work, we will conduct a similar analysis on the HQC [1]
encryption scheme in order to study its resistance to timing attacks. Indeed,
as the latter shares the same framework than RQC in the Hamming setting, it
might be threatened by similar attacks.

References

1. Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Löıc Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, and Gilles
Zémor. Hamming Quasi-Cyclic (HQC). 2017.

2. Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Löıc Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. Rank Quasi-
Cyclic (RQC). 2017.

3. Carlos Aguilar-Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe Ga-
borit, and Gilles Zémor. Efficient Encryption from Random Quasi-Cyclic Codes.
IEEE Transactions on Information Theory, 64(5):3927–3943, 2018.

4. Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, and Jean-Pierre Tillich. A
New Algorithm for Solving the Rank Syndrome Decoding Problem. In 2018 IEEE
International Symposium on Information Theory (ISIT), pages 2421–2425, 2018.

5. Daniel Augot, Pierre Loidreau, and Gwezheneg Robert. Generalized Gabidulin
codes over fields of any characteristic. Designs, Codes and Cryptography,
86(8):1807–1848, 2018.

6. Ernest Mukhamedovich Gabidulin. Theory of codes with maximum rank distance.
Problemy Peredachi Informatsii, 21(1):3–16, 1985.

7. Philippe Gaborit and Gilles Zémor. On the hardness of the decoding and the
minimum distance problems for rank codes. IEEE Transactions on Information
Theory, 62(12):7245–7252, 2016.

8. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. In Theory of Cryptography Conference, pages
341–371. Springer, 2017.

9. Pierre Loidreau. A Welch–Berlekamp like algorithm for decoding Gabidulin codes.
In Coding and cryptography, pages 36–45. Springer, 2006.

10. Oystein Ore. On a special class of polynomials. Transactions of the American
Mathematical Society, 35(3):559–584, 1933.

A Original reconstruction algorithm

Algorithm 5 Original reconstruction algorithm [9, 5]

Input: k, n ∈ N, k ≤ n
g = (g1, · · · , gn) ∈ Fnqm ,Fq-linearly independent elements
y = (y1, · · · , yn) ∈ Fnqm

Output: (N1, V1), solution to Reconstruction(y,g, k, t).

. Initialization step
1: N0(X)←− A〈g1, ··· , gk〉Fq
2: V0(X)←− 0
3: N1(X)←− I[g1, ··· , gk],[y1, ··· , yk]
4: V1(X)←− 1
5: u0 ←− N0{g} − V0{y}
6: u1 ←− N1{g} − V1{y}

. Interpolation step
7: for i ∈ {k + 1, · · · , n} do
8: j ←− i . Early-end case
9: while j ≤ n and u1,j = 0 and u0,j 6= 0 do

10: j ←− j + 1

11: if j = n+ 1 then
12: break
13: else
14: u0,i ←→ u0,j

15: u1,i ←→ u1,j

. q-polynomials update
16: if u1,i 6= 0 then . Nominal case

17: λ1 ←− θ(u1,i)

u1,i

18: λ0 ←− u0,i

u1,i

19: else if u0,i = 0 then . Dummy interpolation case
20: λ1 ←− 0
21: λ0 ←− 0

22: N ′1 ←− (X − λ1) ·N1

23: V ′1 ←− (X − λ1) · V1

24: N ′0 ←− N0 − λ0 ·N1

25: V ′0 ←− V0 − λ0 · V1

. q-polynomials swap
26: N0 ←− N ′1
27: V0 ←− V ′1
28: N1 ←− N ′0
29: V1 ←− V ′0

. Discrepancies update
30: for j ∈ {i+ 1, · · · , n} do
31: u′0,j ←− θ(u1,j)− λ1 · u1,j

32: u′1,j ←− u0,j − λ0 · u1,j

33: return (N1, V1)

B Simpler reconstruction algorithm

Algorithm 6 Simpler reconstruction algorithm (§3.1)

Input: k, n ∈ N, k ≤ n
g = (g1, · · · , gn) ∈ Fnqm ,Fq-linearly independent elements
y = (y1, · · · , yn) ∈ Fnqm

Output: (N1, V1), solution to Reconstruction(y,g, k, t).

. Initialization step
1: N0(X)←− A〈g1, ··· , gk〉Fq
2: V0(X)←− 0
3: N1(X)←− I[g1, ··· , gk],[y1, ··· , yk]
4: V1(X)←− 1
5: u0 ←− N0{g} − V0{y}
6: u1 ←− N1{g} − V1{y}

. Interpolation step
7: for i ∈ {k + 1, . . . , n} do
8: j ←− i . Early-end case
9: while j ≤ n and u1,j = 0 do

10: j ←− j + 1

11: if j = n+ 1 then
12: break
13: else
14: u0,i ←→ u0,j

15: u1,i ←→ u1,j

. q-polynomials update

16: λ1 ←− θ(u1,i)

u1,i
. Nominal case

17: λ0 ←− u0,i

u1,i

18: N ′1 ←− (X − λ1) ·N1

19: V ′1 ←− (X − λ1) · V1

20: N ′0 ←− N0 − λ0 ·N1

21: V ′0 ←− V0 − λ0 · V1

. q-polynomials swap
22: N0 ←− N ′1
23: V0 ←− V ′1
24: N1 ←− N ′0
25: V1 ←− V ′0

. Discrepancies update
26: for j ∈ {i+ 1, · · · , n} do
27: u′0,j ←− θ(u1,j)− λ1 · u1,j

28: u′1,j ←− u0,j − λ0 · u1,j

29: return (N1, V1)

C Constant-time reconstruction algorithm

Algorithm 7 Constant-time reconstruction algorithm (§5)

Input: k, n ∈ N, k ≤ n
g = (g1, · · · , gn) ∈ Fnqm ,Fq-linearly independent elements
y = (y1, · · · , yn) ∈ Fnqm

Output: (N1, V1), solution to Reconstruction(y,g, k, t).

1: . Classical initialization step (see algorithm 6, lines 1 - 6)

. Constant-time initialization step
2: d←− ((n− k)/2 ≡ 0 mod 2) ? k + t− 1 : k + t

3: N2, N3, V2, V3
$←−− { q-polynomials of q-deg d }

4: c0, c1
$←−− Fqm\{0}

5: b←− 0

. Interpolation step
6: for i ∈ {k + 1, · · · , n} do
7: i′ ←− n+ 1 . “Early-end” case
8: for j ∈ {i, · · · , n} do
9: r ←− isZero(u1,j)

10: i′ ←− (1− r)j + ri′

11: if i′ = n+ 1 or b = 1 then
12: b←− 1
13: u0,i ←− c0
14: u1,i ←− c1
15: else
16: u0,i ←→ u0,i′

17: u1,i ←→ u1,i′

. q-polynomials update

18: λ1 ←− θ(u1,i)

u1,i

19: λ0 ←− u0,i

u1,i

20: if b = 0 then . Classical nominal case
21: N ′1 ←− (X − λ1) ·N1

22: V ′1 ←− (X − λ1) · V1

23: N ′0 ←− N0 − λ0 ·N1

24: V ′0 ←− V0 − λ0 · V1

25: else if i− k ≡ 0 mod 2 then . Constant-time nominal case
26: N1 ←− (X − λ1) ·N1

27: V1 ←− (X − λ1) · V1

28: N ′0 ←− N2 − λ0 ·N3

29: V ′0 ←− V2 − λ0 · V3

30: else
31: N ′1 ←− (X − λ1) ·N3

32: V ′1 ←− (X − λ1) · V3

33: N ′0 ←− N2 − λ0 ·N3

34: V ′0 ←− V2 − λ0 · V3

35: . Classical q-polynomials swap (see algorithm 6, lines 22 - 25)

36: . Classical discrepancies update (see algorithm 6, lines 26 - 28)

37: return (N1, V1)

